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ABSTRACT 

Knowledge of the concentration of inhibitors in the flowline is necessary for operators 

to decide on how much more chemical inhibitors to inject to keep the flowline safe. A 

common flow assurance strategy of applying excessive dosages of an inhibitor to 

minimize the risk of pipeline blockage due to hydrate formation often results in more 

cost and severe impact on the environment. Current research interest is in chemical 

methods that require the optimum chemical dosage that will be just enough to keep 

the system safe from hydrate formation using knowledge of inhibitor concentrations 

in the flowline. One of the most efficient of the methods is the conductivity and 

velocity (C-V) technique. However, the method lacks mathematical models to 

interpret the correlation of variables in the experimental data. It also does not have a 

model that can be used as a predictor of new results. This work presents a second-

degree regression predictive model equation as the formulation approach for 

mathematical models (MM) of electrical conductivity and velocity as a function of 

inhibitor concentrations, salt concentrations, and temperature, leveraging on the 

relationships of experimental parameters in the existing C-V method. Furthermore, an 

artificial neural network (ANN) model is developed and trained to predict inhibitor 

concentrations. To achieve all these, the study generated experimental data by 

carrying out series of laboratory works to determine salt and inhibitor concentrations 

in at varying temperatures using the conductivity-velocity (C-V) method. From the 

results, apart from the solution containing 30.0 wt% Mono Ethylene Glycol (MEG) 

and 5.0 wt% NaCl that has slightly larger deviations of – 0.7 and – 0.9 for MM and 

ANN respectively due to MEG inhibitor concentrations that were beyond the range of 

the training data, mathematical models and the ANN model generally agreed with 

experimental measurements in determining inhibitor concentrations.  
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INTRODUCTION 

In mitigating and forestalling hydrate formation, chemical injection stands out as a widely 

employed strategy, lauded for its economic feasibility and technological viability (Linga et al., 

2009). This approach entails the introduction of specialized additives into hydrocarbon 

pipelines to stave off the formation of gas hydrates during the conveyance of hydrocarbons. 
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These hydrate inhibitors can be categorized into two primary groups: thermodynamic hydrate 

inhibitors (THIs) and low-dosage hydrate inhibitors (LDHIs). Thermodynamic inhibitors, such 

as methanol (MeOH), monoethylene glycol (MEG), and ethanol, operate by shifting the 

hydrate phase boundary to lower temperatures and/or higher pressures through the reduction 

of water activity (Barker and Gomez (2000). This alteration allows the system to operate safely 

beyond the confines of the hydrate stability zone. In recent times, low-dosage hydrate inhibitors 

(LDHIs) have experienced rapid advancements (Argo et al., 2012; Fu et al., 2014). The LDHIs 

encompass kinetic hydrate inhibitors (KHIs) and anti-agglomerants (AAs).  

Effectively overseeing and monitoring hydrate formation and inhibition is essential to ensure 

the routine and cost-effective operation of pipelines. Consequently, the management of hydrate 

formation through chemical means mandates precise chemical dosages that strike a harmonious 

balance between prevention and cost-efficiency. As underscored by a study conducted by Yan 

et al. (2014), both excessive and insufficient chemical dosages can yield adverse consequences, 

either inflating costs or exacerbating issues related to hydrate formation. 

Currently, innovative techniques have emerged to assist operators in precisely determining the 

ideal dosage of chemical inhibitors for injection into flowlines. These methodologies offer 

accurate and timely data regarding the extent of hydrate inhibition within pipelines or 

processing facilities, essentially gauging how closely the operational conditions align with the 

Hydrate Stability Zone (HSZ). Among the methods is electrical conductivity measurement, and 

acoustic velocity (C-V) techniques. The C-V method is built on the widely acknowledged 

notion that the electrical conductivity of liquid solutions is contingent upon the concentration 

of ions and their activity. Typically, the aqueous fluids present in pipelines constitute 

electrolyte solutions, with conductivity being directly proportional to the salt concentration. 

The activity of these ions is influenced by factors such as temperature and the presence of 

nonconductive chemical additives. Measurements of electrical conductivity can effectively 

provide insights into the concentrations of various chemicals. Additionally, there is a 

correlation between sound velocity in seawater and parameters such as salinity and temperature 

(Clay and Medwin, 2017). Acoustic velocity has been used in several works to investigate 

solutions and binary gas mixtures (Goodenough et al., 2015; Vyas et al., 2006). The 

development of a methodology for ascertaining optimal hydrate chemical concentrations via 

the conductivity-velocity (C-V) technique hinges on the measurement of both electrical 

conductivity and acoustic velocity within an aqueous sample. 

Although the application of the conductivity and velocity (C-V) technique for determining 

inhibitor concentrations in oil and gas flowlines to achieve optimal hydrate chemical injection 
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has proven highly effective and has entered commercial use, the technique lacks a standardized 

model for interpreting its experimental data. Furthermore, it lacks a model that can serve as a 

predictive tool for new results. This work employs a second-degree regression predictive 

equation to develop mathematical models (MM) of electrical conductivity and velocity as a 

function of inhibitor concentrations, salt concentrations, and temperature, leveraging on the 

relationships of experimental parameters in the existing C-V method. Laboratory experiments 

focused on the monitoring of hydrate chemical inhibition are conducted to generate data. These 

experiments utilized the existing conductivity-velocity method to investigate alterations in 

inhibitor concentrations and temperature, which impact both electrical conductivity and sound 

velocity. Furthermore, an artificial neural network (ANN) model is developed and trained with 

experimental data to predict inhibitor concentrations.  

 

2. Related Works 

In recent years a great deal of effort has been made to optimize hydrate inhibitor injection to 

minimize the cost and environmental impact. Willmon and Edwards (2016) suggested 

experience-based rules of thumb to help rationalizing the dosage of hydrate inhibitors. Lavallie 

et al (2022) proposed method consists in determining the parameters of the hydrate formation 

based on fixing the optical effect of the light source reflection distortion on the mirror-like 

“liquid-gas” interphase surface. This optical effect makes it possible to sensitively record the 

changes occurring at the micro level with a mirror-like interphase “gas-liquid” surface.  This 

effect of the interphase boundary distortion is explained by the formation, growth, chaotic 

accumulation, and localization at this boundary of hydrate microcrystals of different shapes 

and sizes. A recent method of monitoring hydrate formation is the use of knowledge of existing 

concentrations of inhibitors in the flowline. The water activity method is one of the inhibitor 

concentration methods. A general correlation has been developed to relate the measured water 

activity values to the hydrate suppression temperate by generating pseudo, which is much 

easier than experimental data using a well-proven thermodynamic model (Avlonitis, 2014). 

Using pseudo-experimental data instead of real experimental data in developing the correlation 

makes it possible to generate a large database of different concentrations of salt and alcohol 

(methanol and MEG) solutions over a wide range of concentrations at a shorter time and lower 

cost. Despite the development of sophisticated hydrate phase equilibrium calculation models 

that are both the most accurate and most comprehensive, such as the vapour–solid equilibrium 

ratio (Ki value) method (Carson and Katz, 1942; Wilcox et al., 1941). The main advantage of 
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these techniques is the availability of input data and the simplicity of the calculation, which 

can be performed by using charts or hand-held calculators.  

 

Since 1945, the gas gravity method given by Katz (1945) has been an indispensable and simple 

tool for predicting the gas hydrate stability zone. It only requires the specific gravity of the 

mixture, i.e., the molecular mass of the gas mixture divided by that of air. The original gas 

gravity method is only applicable to dry gas systems. However, the development of 

offshore/arctic oil and gas-condensate fields necessitated a robust and simple method for 

predicting the hydrate stability zone for these systems. Ostergaard et al. (2015) developed a 

method similar to the gas gravity method, applicable to all reservoir fluids, in the presence of 

distilled water, from natural gas to black oil, which only requires information on the specific 

gravity and the concentration of the hydrate forming components in the system. The method 

can take into account the effect of non-hydrocarbon gases (i.e., CO2 and N2) in the petroleum 

fluid. There also exist simple tools for estimating the hydrate inhibition effect of salts and 

organic inhibitors.  

 

The most famous one is the Hammerschmidt (1934) equation, but also equations by Yousif and 

Young (1993) are available. These equations calculate the suppression of the hydrate 

dissociation temperature, ΔT, compared to that of distilled water (i.e., the hydrate phase 

boundary in the presence of distilled water should be determined separately). Inherently, they 

have the following simplifying assumptions, reducing their accuracy; ΔT is independent of the 

system pressure, ΔT is independent of gas/oil composition and hydrate structure. ΔT is 

independent of the inhibitor. Ostergaard et al. (2015) developed a correlation for predicting the 

hydrate stability zone of reservoir and drilling fluid in presence of thermodynamic inhibitors 

(i.e., electrolytes and organic inhibitors). This correlation requires inhibitor concentration, 

pressure of the system and if known the dissociation pressure of hydrocarbon fluid in the 

presence of distilled water at 273.12K. Mohammadi and Richon (2016) studied the possibility 

of estimating hydrate stability zone based on reflective index data of aqueous solution 

containing salt or organic inhibitor using an artificial neural network method. The correlation 

considers the changes in index of refraction with respect to refractive index of pure water for a 

given aqueous solution. In a very similar work, Mohammadi et al. (2016). have looked at the 

possibility of estimating hydrate stability zone from electrical conductivity data of salt aqueous 

solutions. This correlation cannot predict the effect of presence of thermodynamic inhibitor. 

Both of these correlations have been validated using only limited literature data. The centre for 
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Gas Hydrate Research at Heriot-Watt University developed a correlation based on freezing 

point depression which determines the hydrate safety zone (HSZ) by measuring the freezing 

point of the downstream water samples (Tohidi et al, 2009). A prototype developed for this 

method has its own limitation, particularly for high inhibitor concentration. To measure 

freezing point of an aqueous sample using the method, the sample need to be freezed. For high 

concentrations e.g., 50 mass% of MEG the system needs to be cooled to around -50oC to freeze 

the sample. The minimum temperature which the current prototype can reach is about -40 °C. 

The second limitation is that, in such high concentration limited amount of ice will form, hence 

accuracy is hindered. This method has also a limited potential for on-line application. Tohidi 

et al. (2008) had previously proposed a method for determining the stability margin of hydrate 

zone based on water content measurement in the gas phase. Similarly, Yang et al., 2011 

developed the conductivity and velocity (C-V) method for two parameters systems (systems 

with two unknown salt and/or inhibitor concentrations), i.e., MeOH or MEG or KHI systems 

in the presence of salts. It was previously reported that the hydrate suppression temperature 

(i.e., dissociation temperature shift) of salt aqueous solution can be determined by measuring 

the electrical conductivity of an aqueous sample (Mohammadi, et al., 2016). Henning et al. 

(2017) developed an acoustic multi-sensor system for accurate measurements of concentrations 

of chemicals like MeOH and MEG. However, in most cases, there are salts and one inhibitor 

at least in the aqueous phase in a pipeline. To be able to determine both inhibitor and salt 

concentrations simultaneously two physical properties are at least to be known. Sandengen and 

Kaasa (2018) developed an empirical correlation that determined MEG concentration and NaCl 

concentration based on measurements of the density and electrical conductivity of water 

samples under examination. However, the requirement of high accuracy of the density 

measurement makes it hardly applicable to real produced water samples that usually contain 

solid particles (sands and clays) and oil droplets.  

 

Bonyad et al (2021) developed a technique for optimizing hydrate inhibitor injection rates by 

monitoring the actual hydrate inhibitor concentrations downstream. The technique determines 

the salt and inhibitor concentrations by measuring speed of sound and electrical conductivity 

in an aqueous sample taken from pipeline/separator. Lavallie et al (2022) compared the 

automated laboratory C-V technique which combines the double measurements of water 

conductivity and ultrasonic sound velocity which are analysed by a method based on 

colorimetric titration which requires rather long manual analysis. Yang et al. (2023) developed 

a technique for measuring the concentration of salts, thermodynamic and kinetic hydrate 
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inhibitors in the aqueous phase based on integrated data collection on electrical conductivity 

and acoustic velocity of aqueous phase chemical composition. The work led to the 

determination of hydrocarbon fluid composition and, accordingly, hydrate stability zone 

recognition.  

 

3. MATERIALS AND METHODS 

This section presents the materials, equipment, and the methods used in carrying out the study. 

The methods entail the procedures used in laboratory experimental work, the formulation of a 

mathematical model to validate the experimental process, the development of an artificial 

neural network model using experimental AA, KHI, and thermodynamic systems data. Finally, 

the integration of the ANN model to a thermodynamic model to predict hydrate phase 

boundary. 

 

3.1 Materials 

The materials utilized in the experimental phase of this study encompass chemicals and 

equipment. The chemicals employed consist of (1) Deionized water (2) Thermodynamic 

inhibitors: ethanol and ethylene glycol (MEG) (3) Salts: NaCl (4) Kinetic Hydrate Inhibitors 

(KHI): commercial KHI and (5) Anti-agglomerants (AA): commercial water-soluble AA and 

oil-soluble AA. The equipment comprises (1) Electrical Conductivity Meter (2) Ultrasound 

Pulse Generator (3) Ultrasound Transducer (4) Data Acquisition Board and (5) Measurement 

Cell. 

 

3.2 Methods 

The methods involve the procedures used in laboratory experimental work, the formulation of 

a mathematical model to validate the experimental process, the development of an artificial 

neural network model using experimental data. Then, the assessment of HSZ of a 

thermodynamic system using inhibitor and salt concentrations determined by the ANN model.  

 

3.2.1 Experimental Setup 

A microcontroller-based wave generator with an integrated 16-bit AD converter was employed 

to measure the induced voltage, which was then translated into electrical conductivity (Figure 

3.1). Additionally, temperature was monitored using an 8-bit AD converter that was part of the 

system. The collected data was transmitted to a computer through an RS232 serial port. 
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Figure 3.1: Schematic diagram of the experimental setup 

 

To measure sound velocity, a pair of Panametric V104 ultrasound transducers operating at a 

frequency of 1 MHz was employed. These transducers were responsible for both transmitting 

the sound wave and receiving data as it passed through the sample within the cell. A standard 

ultrasound pulse generator (PR5072) was utilized to produce a pulse of -100 volts, which 

effectively excited the ultrasound transducer. The pulse generator was configured to operate at 

1 MHz to align with the specifications of the ultrasound transducers. 

For capturing the ultrasound wave, a high-frequency data acquisition board was utilized. This 

board featured an ultrafast 8-bit Atmel ADC and a Xilinx Spartan FPGA (Field Programmable 

Gate Array). The substantial volume of raw data collected was then transferred to the computer 

via a Universal Serial Bus (USB 2.0) connection. 
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3.2.2: Experimental Procedure 

A process was initiated where approximately 120 ml of prepared aqueous solutions were 

introduced into the C-V cell. To maintain precise control over the measurement temperature, a 

thermostat connected to a cooling jacket that enveloped the sample cell was employed. 

Measurements of both conductivity and velocity were performed at various temperatures, 

including 0, 4, 15, and 25 ºC for the two-parameter measurement method, and at 10 and 20 ºC 

for the three-parameter method. To ensure accurate results, each test sample was held at its 

designated temperature for a minimum of one hour to achieve thermal equilibrium. All 

measurements were carried out under atmospheric pressure. 

 

To guarantee measurement accuracy, the conductivity meter underwent calibration using a 

0.1D KCl standard solution, while the velocity measurement was calibrated using deionized 

water. 

3.2.3: Data Collection and Analysis 

The data collected from multiple experimental runs were gathered and subjected to analysis. 

This analysis aimed to uncover patterns, acquire knowledge, and unveil relationships among 

the various data variables. This information was leveraged for two primary purposes: (1) the 

development of a mathematical model to validate the C-V technique, and (2) the training of an 

artificial neural network (ANN) model capable of predicting salt and inhibitor concentrations 

based on conductivity and velocity measurements at different temperatures. 

 

3.2.4: Pre-Processing of experimental data 

The data came with noise, gaps, and inconsistencies that made it unsuitable for direct use in 

algorithms without some preprocessing. To enhance prediction accuracy, a preprocessing step 

is applied to the experimental data. This preprocessing includes normalization, data balancing, 

and cropping. To ensure consistency in the ANN model, the data is divided into segments, each 

with a fixed length, and then normalized using z-score normalization. 

The convergence of a neural network works better when the data follows a normal distribution. 

Equation (3.1) is employed for normalization: 

 

Normalization (X) = 
𝑥− 𝑥̅

𝑠
                                                                                            

 (3.1) 
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Here, 'x' represents the data value, 'x̅' is the average, and 's' is the standard deviation. 

The issue of data balance or class imbalance is also addressed because the distribution of 

datasets can impact training outcomes. Imbalanced datasets can lead to the over-detection of 

certain classes in the output, particularly those with more data. To tackle dataset imbalance, a 

specific percentage of the majority class was adopted. 

 

3.2.5:  Formulation of Mathematical Models 

 

From the experiment, electrical conductivity is a function of salt concentration, inhibitor 

concentration and the operating temperature. The models incorporated inhibitor concentration, 

salt concentration, and temperature as independent variables and electrical conductivity as the 

dependent variable to validate the C-V technique. To achieve this, the study employs a second-

degree regression predictive model equation as the formulation approach. 

 

Electrical Conductivity (EC) Model 

 
EC = 𝑓(𝐶𝑠,𝐶𝑖, 𝑇) 

𝐸𝐶 =  𝛽𝑂 + 𝛽1𝐶𝑠 + 𝛽2 𝐶𝑖 + 𝛽3𝑇 + 𝛽12 𝐶𝑠 𝐶𝑖 +  𝛽13 𝐶𝑠T +  𝛽23 𝐶𝑖T + 𝛽11 𝐶𝑠
2 +  𝛽22 𝐶𝑖

2 +  𝛽33𝑇2 + e𝑖    

                                                                                                                                                              3.2 

The errors in EC are obtained by rewriting equation (3.13) as: 
𝑒𝑖 = 𝐸𝐶 − 𝛽𝑜 − 𝛽1 𝐶𝑠 −  𝛽2 𝐶𝑖 − 𝛽3 𝑇 − 𝛽12 𝐶𝑠 𝐶𝑖 − 𝛽13 𝐶𝑠𝑇 −  𝛽23 𝐶𝑖𝑇 − 𝛽11𝐶𝑆

2 −  𝛽22𝐶𝑖
2 −  𝛽33 𝑇

2  

                                                                                                                                                              3.3 
  

𝑒𝑖
2 =  (𝐸𝐶 − 𝛽0 − 𝛽1 𝐶𝑠 − 𝛽2 𝐶𝑖 − 𝛽3𝑇 − 𝛽12𝐶𝑠𝐶𝑖 − 𝛽13𝐶𝑠𝑇 − 𝛽23𝐶𝑖𝑇 − 𝛽22𝐶𝑖

2 − 𝛽33 𝑇
2)

2
 

                                                                                                                                       3.4 

The sum of the squares of these errors is written as:    

∑ 𝑒𝑖
2 =  (𝐸𝐶 − 𝛽0 − 𝛽1 𝐶𝑠 − 𝛽2 𝐶𝑖 − 𝛽3𝑇 − 𝛽12𝐶𝑠𝐶𝑖 − 𝛽13𝐶𝑠𝑇 − 𝛽23𝐶𝑖𝑇 − 𝛽11𝐶𝑆

2 − 𝛽22𝐶𝑖
2 − 𝛽33 𝑇

2)
2

𝑛

𝑖=1

 

                                                                                                                                                               3.5 
 

𝑙𝑒𝑡 𝐿 =  ∑ 𝑒𝑖
2

𝑛

𝑖=1

𝑎𝑛𝑑 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 
𝜕𝐿

𝜕𝛽0
⁄ = 𝑍𝑒𝑟𝑜 

                                                                                                                                                                                   3.6 

𝜕𝑙

𝜕𝛽0

=  −2 ∑(𝐸𝐶 − 𝛽0 − 𝛽1 𝐶𝑠 − 𝛽2 𝐶𝑖 − 𝛽3𝑇 − 𝛽12𝐶𝑠𝐶𝑖 − 𝛽13𝐶𝑠𝑇 −  𝛽23𝐶𝑖𝑇 − 𝛽11𝐶𝑆
2 − 𝛽22𝐶𝑖

2 − 𝛽33 𝑇
2)

𝑛

𝑖=1

= 0 

                                                                                                                                                              3.7 

Similarly, the Velocity (V) Model was developed as: 

V = 𝑓(𝐶𝑠,𝐶𝑖 , 𝑇) 

 

𝑉 =  𝛽𝑂 +  𝛽1𝐶𝑠 +  𝛽2 𝐶𝑖 +  𝛽3𝑇 + 𝛽12 𝐶𝑠 𝐶𝑖 + 𝛽13 𝐶𝑠T +  𝛽23 𝐶𝑖T +  𝛽11 𝐶𝑠
2 + 𝛽22 𝐶𝑖

2 + 𝛽33T + e𝑖    

                                                                                                                                                         3.8 
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EC and V represent electrical conductivity and sound velocity respectively, which are the 

variables predicted. Cs, Ci, and T stand for salt concentrations, inhibitor concentrations, and 

temperature, respectively, serving as the independent or predictive variables. The term "ei" 

represents the error terms, accounting for the model's inability to precisely match the data. L 

represents the sum of the squared error terms. β0, β1, β2, and β3 are the regression coefficients 

of the model, which are constant values estimated from the data. β0 is the constant intercept, 

representing the V value when Cs = 0, Ci = 0, and T = 0. β1 is the partial regression coefficient 

indicating the contribution of salt concentrations (Cs) to electrical conductivity (EC) and sound 

velocity (V), adjusted for inhibitor concentrations (Ci) and temperature (T). β2 represents the 

partial regression coefficient indicating the impact of inhibitor concentrations (Ci) on sound 

velocity (V), adjusted for salt concentrations (Cs) and temperature (T). Similarly, β3 is the 

partial regression coefficient showing the influence of temperature (T) on sound velocity (V), 

adjusted for salt concentrations (Cs) and inhibitor concentrations (Ci). The notations β11c_s^2, 

β22c_i^2, β33T^2 represent the squared effects of salt concentrations, inhibitor concentrations, 

and temperature, respectively. On the other hand, β12c_s c_i, β13c_s T, β23c_i T represent the 

interactions between salt concentrations and inhibitor concentrations, salt concentrations and 

temperature, and inhibitor concentrations and temperature, respectively. 

 

3.2.6: Artificial Neural Network Model 

An artificial neural network (ANN) model was developed and trained with the generated 

laboratory experimental data. An artificial neural network comprises numerous computational 

units known as neurons, interconnected by weighted communication links, as illustrated in 

Figure 3.2.  
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Figure 3.2: ANN Model for determining salt and inhibitor concentrations 

The input layer of the network is responsible for receiving all input data and presenting scaled 

data to the network. Information from the input neurons is transmitted through the network via 

these weighted connections. Each neuron in a given layer, denoted as the "k" layer, is linked to 

every neuron in adjacent layers. Within the hidden "k" layer, each neuron performs the 

following tasks: it computes the sum of the incoming weighted inputs (input vector Ii = [I1, I2, 

..., INk-I]) and then transmits this summation through a non-linear activation function, denoted 

as "f," to the adjacent neurons in the next hidden layer or to the output neuron(s). In this 

particular study, the activation function employed is a sigmoid function: 

 

𝑓(𝑥) =
1

1+𝑒−𝑥
               𝑥 ∈ [0,1]                            3.9 

 

A bias term, b, is associated with each interconnection in order to introduce a supplementary 

degree of freedom. The expression of the weighted sum, S. to the 𝑖𝑡ℎ neuron in the 𝑘𝑡ℎ layer 

(k≥2) is: 

 

𝑆𝑘,𝑖 = ∑ [(𝑤𝑘−1,𝑗,𝑖𝐼𝑘−1,𝑗) + 𝑏𝑘,𝑖]
𝑁𝐾−𝐼
𝑗=𝐼                                                       3.10 

 

Where w is the weight parameter between each neuron-neuron interconnection. Using this 

simple feed-forward networks with non-linear sigmoid activation functions, the output, 0, of 

the i neuron within the hidden k layer is therefore: 

 

𝑂𝑘,𝑖 =
1

1+𝑒−(∑ [(𝑤𝑘−1,𝑗,𝑖 𝐼𝑘−𝑖,𝑗)+𝑏𝑘,𝑖]
𝑁𝑘−1
𝑗=1

)
=

1

1+𝑒
−𝑠𝑘,𝑖

                                                      3.11 

For the use with the neural network, the input data, X, were normalized and centred:     

     

𝑋𝑖
𝐼 = 0.1 + 0.8

𝑋𝑖
𝐼−𝑋𝑖,𝑚𝑖𝑛

𝑋𝑖,𝑚𝑎𝑥− 𝑋𝑖,𝑚𝑖𝑛
                                                                                   3.12 

 

Where Xi is the 𝑖𝑡ℎ values of the input data fed to the input neuron i, and 𝑋𝑖,𝑚𝑖𝑛 is the minimal 

value of the input data fed to the same i neuron and inversely 𝑋𝑖,𝑚𝑎𝑥 is the maximal value. To 

achieve a better stability and to have output of the same order of magnitude, the following 

scaling rule was applied to salt and inhibitor concentrations before normalisation: 

 

𝑋𝑁𝑒𝑡𝑤𝑜𝑟𝑘 = 𝐼𝑛(𝑋𝑒𝑥𝑝)                                                                                     3.13 

 

In the case of the ethanol-salt system, the data was segregated into two groups: the first group 

encompassed ethanol concentrations ranging from 0 to 20 wt%, and the second group covered 
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concentrations from 30 to 50 wt%. In both scenarios, the NaCl concentration ranged from 0 to 

10 wt%. Based on this data analysis, two separate ANNs were trained to predict ethanol and 

salt concentrations. The network structure for training was similar to the AA-Salt models, with 

slight adjustments such as a reduced number of inputs (two) due to a constant temperature (20 

°C) and a smaller set of data, resulting in a hidden layer with 5 neurons. 

 

In the KHI and salt system, we employed a design with 2 inputs (conductivity and velocity) 

and two outputs for the ANN. We opted for five neurons in the hidden layer due to the observed 

sensitivity of sound velocity and electrical conductivity to changes in KHI and salt 

concentrations. 

 

For the MEG-KHI-NaCl system, we prepared two sets of data for ANN development. In both 

datasets, we utilized conductivity and velocity at 25 °C as two of the three required parameters. 

In the first set, we included the conductivity thermal coefficient as the third parameter, while 

in the second set, we used the sound velocity thermal coefficient to determine which coefficient 

would yield better ANN prediction performance. To train the ANN, we defined a network 

structure with 3 inputs and 3 outputs. After several trials, we settled on using 7 neurons in the 

hidden layer. 

 

ANN Training 

During the training process, input variables are supplied to the network, and the difference 

between the experimental outputs and the calculated outputs serves as the criterion for adjusting 

the network's synaptic weights. Initially, all synaptic weights and biases are randomly 

initialized. The network undergoes training, and its synaptic weights are fine-tuned using an 

optimization algorithm until it accurately replicates the input/output mapping by minimizing 

the average root mean square error. This work employed the Levenberg-Marquardt algorithm 

(Levenberg, 1944; Marquardt, 1963) as the chosen optimization method. The Levenberg-

Marquardt optimization algorithm involves modeling the network's synaptic weights using the 

following formula: 

 

𝑤𝑗 = 𝑤𝑗−𝑖 − [𝐻̅(𝑤𝑗−𝑖) + 𝜇𝑗𝐼𝑑̅]
−1

∇𝐽(𝑤𝑗−1)                                                           3.14 

With 

𝐻̅(𝑤𝑗) = ∑ (
𝜕𝑒𝑟𝑟𝑘

𝜕𝑤𝑗
)𝑁

𝑘−𝐼 (
𝜕𝑒𝑟𝑟𝑘

𝜕𝑤𝑗
)

𝑇

+ ∑ (
𝜕2𝑒𝑟𝑟𝑘

𝜕𝑤𝑗𝜕𝑤𝑗
𝑇  𝑒𝑟𝑟𝑘)𝑁

𝑘=𝐼                                          3.15 
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Where 𝑒𝑟𝑟𝑘, 𝜇, 𝐽, 𝑁are the residue vector, the step values of the Levenberg-Marquardt method 

Equation 3.63 and Equation 3.64, the Jacobian matrix of the first derivative of global error to 

weight and the number of feed inputs, respectively.  𝜕𝑒𝑟𝑟𝑘 is defined by: 

𝑒𝑟𝑟𝐼 = 𝑌𝐼
𝑒𝑥𝑝. − 𝑌𝑐𝑎𝑙

𝐼                                                                                                  3.16 

 

Finally, inhibitor and salt concentrations are then re-transformed to their original scale. 

 

4. RESULT AND DISCUSSION 

The electrical conductivity and velocity experiments encompassed all three categories of 

hydrate inhibitors: thermodynamic hydrate inhibitors, KHIs, and AAs, under varying 

conditions, including the presence and absence of salt. Specifically, we investigated 

thermodynamic inhibitors like methanol and ethylene glycol, KHIs, and AAs. Additionally, we 

measured the mathematical model and the ANN model results to validate the C-V method’s 

experimental data. The outcomes of the models closely align with the experimental data. From 

Figures 4.1, 4.2, and 4.3, it's evident that at every data point, the ANN predictions are closer to 

the experimental values compared to the predictions from the mathematical model (MM). 

While there are some cases of overlap where both models agree with the experimental data 

(true values), overall, the graphs demonstrate that the predicted concentrations by the ANN 

align more closely with the experimental values in comparison to the MM's predictions. This 

suggests that the ANN model is performing better in capturing the underlying relationships in 

the data and providing more accurate predictions. 

 

 
Fig 4.1: EXP, MM, and ANN results on the effect of conductivity and velocity on MEG 

concentrations at 15oC 
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Fig 4.2: EXP, MM, and ANN results on the effect of conductivity and velocity on AA 

concentrations at 15oC 

 

 
Fig 4.3: EXP, MM, and ANN results on the effect of conductivity and velocity on AA 

concentrations at 25oC 

 

To evaluate the inhibitor systems, results of the mathematical models and results of the ANN 

model were compared with experimental data. Table 4.1 contains a sample of specific 

predictions evaluated. 

 

Table 4.1: Evaluation results of MM and ANN models, in wt% 

                                               PARAMETERS RESULTS 
Inhibition 

systems 

Hydrate 

Inhibitors 

Temp 

(oC ) 

Conductivi

ty 

(ms/cm) 

Velocity 

(m/s) 

Concentrations AD 

EXP MM ANN MM ANN 

AA-

NACL 

AA 

NACL 

4 

4 

10.65 

10.65 

1438.9 

1438.9 

1.50 

1.00 

1.60 

1.24 

1.45 

0.99 

0.10 

0.24 

- 0.05 

- 0.01 

AA-

NACL 

AA 

NACL 

4 

4 

29.57 

29.57 

1460.9 

1460.9 

0.20 

3.00 

0.20 

3.10 

0.20 

2.97 

0.0 

0.10 

0.0 

- 0.03 

AA-

NACL 

AA 

NACL 

15 

15 

14.28 

14.28 

1482.7 

1482.7 

2.00 

1.00 

2.10 

1.16 

2.10 

1.00 

0.10 

0.16 

0.10 

0.0 

AA-

NACL 

AA 

NACL 

15 

15 

37.60 

37.60 

1506.0 

1506.0 

2.80 

3.00 

2.90 

3.08 

2.79 

3.00 

0.10 

0.08 

- 0.01 

0.0 

MEG-

NACL 

MEG 

NACL 

15 

15 

20.53 

20.53 

1600.6 

1600.6 

20.0 

3.0 

20.0 

2.70 

19.97 

3.02 

0.0 

- 0.3 

- 0.03 

0.02 

MEG-

NACL 

MEG 

NACL 

15 

15 

27.70 

27.70 

1664.7 

1664.7 

30.0 

5.00 

29.10 

4.80 

29.34 

5.10 

- 0.9 

- 0.2 

- 0.7 

0.10 
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AA-

NACL 

AA 

NACL 

25 

25 

17.85 

17.85 

1509.9 

1509.9 

1.50 

1.00 

1.60 

1.24 

1.45 

0.99 

0.10 

0.24 

- 0.05 

- 0.01 

AA-

NACL 

AA 

NACL 

25 

25 

47.51 

47.51 

1531.3 

1531.3 

2.00 

3.00 

1.77 

2.64 

2.13 

3.06 

- 0.23 

- 0.36 

0.13 

0.06 

MEG-

NACL 

MEG 

NACL 

25 

25 

6.83 

6.83 

1634.4 

1634.4 

30.0 

1.00 

30.0 

0.99 

30.0 

1.34 

0.0 

- 0.01 

0.0 

0.34 

MEG-

NACL 

MEG 

NACL 

25 

25 

26.31 

26.31 

1612.4 

1612.4 

20.0 

3.00 

20.6 

2.70 

20.08 

3.02 

0.6 

- 0.3 

0.08 

0.02 

 

In Table 4.1, "EXP" represents the experimental data, "MM" stands for the results from the 

mathematical model, and "ANN" corresponds to the results from the artificial neural network 

model. "AD" denotes the absolute deviation, which is defined as the difference between the 

model-predicted concentrations and the experimental concentrations. 

 

From the results, the artificial neural network model's predicted values ("ANN" in Table 4.1) 

exhibit better agreement with the experimental data ("EXP" in Table 4.1) compared to the 

predicted values from the mathematical model ("MM" in Table 4.1). Even in cases where both 

models have slightly larger deviations, such as in the solution containing 30.0 wt% MEG and 

5.0 wt% NaCl, the deviation of -0.7 from the ANN is less than the -0.9 deviation from the MM. 

This larger deviation can be attributed to MEG inhibitor concentrations that fall beyond the 

range of the model training data. 

 

5. CONCLUSION  

A principal objective of this research was to provide analytical models capable of effectively 

interpreting and validating the C-V method. This endeavor utilized second-degree regression 

predictive models to formulate equations for electrical conductivity and velocity as functions 

of inhibitor and salt concentrations, alongside temperature. Subsequent model validation 

through MATLAB simulations consistently yielded results in alignment with the experimental 

dataset. 

 

Furthermore, an Artificial Neural Network (ANN) model, an exemplar of artificial intelligence, 

was developed, harnessing extensive experimental data derived from various systems. This 

model, driven by conductivity, velocity, and temperature as input variables, excels in 

determining inhibitor and salt concentrations. Notably, the concentrations of inhibitors and 

salts derived from the ANN model exhibited closer concordance with experimental values.  
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With the agreement between the results of the ANN/MM models and the experimental values, 

the C-V experimental method can be interpreted with second-degree regression predictive 

models and new results predicted with ANN model. The accurate assessment of inhibitor 

concentrations by the models resulted to accurate prediction of phase boundary which is an 

instrumental facet in ascertaining the optimal dosage of hydrate inhibitors to be injected in 

flowlines to prevent hydrate formation. 
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